朱祺琪

唐僧洗头爱飘柔
精选回答

中国地质大学(武汉)地理与信息工程学院副教授,硕士生导师。2013年免试攻读武汉大学硕士学位,2015年硕博连读提前攻博,师从李德仁院士、钟燕飞教授与张良培教授,2018年6月毕业于武汉大学测绘遥感信息工程国家重点实验室,获摄影测量与遥感专业工学博士学位。2018年7月2018年以“地大学者”青年优秀人才引进至中国地质大学(武汉)地理与信息工程学院地理系。
朱祺琪教育经历2013 - 2018年,武汉大学 博士
朱祺琪研究方向基于航天、航空、无人机等高分辨率、高光谱多源遥感数据及多源地理数据,重点研究:
(1)概率图模型、迁移学习、深度学习等机器学习方法
(2)场景分类、目标探测、语义分割、视频目标追踪、道路提取、变化检测等遥感图像解译任务
(3)城市遥感、功能区规划、农业遥感、地理信息服务等应用
已发表SCI论文十余篇,两篇论文入选2017年及2019年ESI全球1%高被引论文。已主持或参与国家重点研发计划课题、国家自然科学基金、国家发改委项目等科研项目十余项。
担任IEEE Transaction on Geoscience and Remote Sensing、IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing、IEEE Access、Remote Sensing、IEEE Geoscience and Remote Sensing Letter、International Journal of Remote Sensing等遥感、计算机领域国际权威SCI期刊的审稿人。
[1] Q. Zhu, Y. Zhong, L. Zhang, and D. Li, “Adaptive deep sparse semantic modeling framework for high spatial resolution image scene classification,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 10, pp. 6180 – 6195, 2018. (SCI top, IF=4.942,中科院TOP)
[2] Q. Zhu, Y. Zhong, S. Wu, L. Zhang, and D. Li, “Scene classification based on the sparse homogeneous-heterogeneous topic feature model,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 5,pp. 2689 – 2703, 2018. (SCI top, IF=4.942,中科院TOP)
[3] Q. Zhu, Y. Zhong, L. Zhang, and D. Li, “Scene classification based on the fully sparse semantic topic model,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 10, pp. 5525 – 5538, 2017. (SCI top, IF=4.942,中科院TOP)
[4] Y. Zhong, Q. Zhu, and L. Zhang, “Scene classification based on the multifeature fusion probabilistic topic model for high spatial resolution remote sensing imagery,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 11, pp. 6207–6222, Nov. 2015. (SCI top, ESI 高被引论文, Google citation: 101, IF=4.942, 中科院TOP)
[5] Q. Zhu, Y. Zhong, B. Zhao, G. S. Xia, and L. Zhang, “Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 6, pp. 747–751, Jun. 2016. (SCI, ESI 高被引论文, Google citation: 77, IF=2.761, 中科院三区)
[6] Q. Zhu, Y. Zhong, Y. Liu, L. Zhang, and D. Li, “A deep-local-global feature fusion framework for high spatial resolution image scene classification”, Remote Sensing, vol. 10, no. 4, pp. 568, 2018. (SCI, IF=3.244, 中科院二区)
[7] Y. Liu, Y. Zhong, F. Fei, Q. Zhu, Q. Qin, “Scene Classification Based on a Deep Random-Scale Stretched Convolutional Neural Network”, Remote Sensing, vol. 10, no. 3, pp. 444, 2018. (SCI, IF=3.244, 中科院二区)
[8] Y. Zhong, M. Cui, Q. Zhu, and L. Zhang, “Scene classification based on multifeature probabilistic latent semantic analysis for high spatial resolution remote sensing images,” J. Appl. Remote Sens., vol. 9, no. 1, pp. 095064–095064, Jul. 2015. (SCI, IF=2.761,中科院三区)
[9] Q. Zhu, X. Sun, Y. Zhong, L. Zhang, “High-resolution remote sensing image scene understanding: a review,” in Proc. 2019IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 27–August 3, 2019, Yokohama, Japan. (EI)
[10] Q. Zhu, Y. Zhong, L. Zhang, “Scene classification based on the semantic-feature fusion fully sparse topic model for high spatial resolution remote sensing imagery,” in Proc. 2016 International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS), July 12–19, 2016, Czech, Prague. (EI)
[11] Q. Zhu, Y. Zhong, L. Zhang, “The bag-of-visual-words scene classifier combining local and global features for high spatial resolution imagery,” in Proc. 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), August 15–17, 2015, Zhangjiajie, China. (EI)
[12] Q. Zhu, Y. Zhong, L. Zhang, “Multi-feature probability topic scene classifier for high spatial resolution remote sensing imagery,” in Proc. 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 13–18, 2014, Quebec, Canada. (EI)
[13] M. Song, Y. Zhong, A. Ma, Q. Zhu, L. Cao, L. Zhang, “Sub-pixel mapping with multiple shifted hyperspectral images based on multiobjective evolutionary algorithm,” in Proc. 2019IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 27–August 3, 2019, Yokohama, Japan. (EI)
朱祺琪学术成果已发表SCI论文十余篇,两篇论文入选2017年及2019年ESI全球1%高被引论文。已主持或参与国家重点研发计划课题、国家自然科学基金、国家发改委项目等科研项目十余项。
担任IEEE Transaction on Geoscience and Remote Sensing、IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing、IEEE Access、Remote Sensing、IEEE Geoscience and Remote Sensing Letter、International Journal of Remote Sensing等遥感、计算机领域国际权威SCI期刊的审稿人。
[1] Q. Zhu, Y. Zhong, L. Zhang, and D. Li, “Adaptive deep sparse semantic modeling framework for high spatial resolution image scene classification,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 10, pp. 6180 – 6195, 2018. (SCI top, IF=4.942,中科院TOP)
[2] Q. Zhu, Y. Zhong, S. Wu, L. Zhang, and D. Li, “Scene classification based on the sparse homogeneous-heterogeneous topic feature model,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 5,pp. 2689 – 2703, 2018. (SCI top, IF=4.942,中科院TOP)
[3] Q. Zhu, Y. Zhong, L. Zhang, and D. Li, “Scene classification based on the fully sparse semantic topic model,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 10, pp. 5525 – 5538, 2017. (SCI top, IF=4.942,中科院TOP)
[4] Y. Zhong, Q. Zhu, and L. Zhang, “Scene classification based on the multifeature fusion probabilistic topic model for high spatial resolution remote sensing imagery,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 11, pp. 6207–6222, Nov. 2015. (SCI top, ESI 高被引论文, Google citation: 101, IF=4.942, 中科院TOP)
[5] Q. Zhu, Y. Zhong, B. Zhao, G. S. Xia, and L. Zhang, “Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 6, pp. 747–751, Jun. 2016. (SCI, ESI 高被引论文, Google citation: 77, IF=2.761, 中科院三区)
[6] Q. Zhu, Y. Zhong, Y. Liu, L. Zhang, and D. Li, “A deep-local-global feature fusion framework for high spatial resolution image scene classification”, Remote Sensing, vol. 10, no. 4, pp. 568, 2018. (SCI, IF=3.244, 中科院二区)
[7] Y. Liu, Y. Zhong, F. Fei, Q. Zhu, Q. Qin, “Scene Classification Based on a Deep Random-Scale Stretched Convolutional Neural Network”, Remote Sensing, vol. 10, no. 3, pp. 444, 2018. (SCI, IF=3.244, 中科院二区)
[8] Y. Zhong, M. Cui, Q. Zhu, and L. Zhang, “Scene classification based on multifeature probabilistic latent semantic analysis for high spatial resolution remote sensing images,” J. Appl. Remote Sens., vol. 9, no. 1, pp. 095064–095064, Jul. 2015. (SCI, IF=2.761,中科院三区)
[9] Q. Zhu, X. Sun, Y. Zhong, L. Zhang, “High-resolution remote sensing image scene understanding: a review,” in Proc. 2019IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 27–August 3, 2019, Yokohama, Japan. (EI)
[10] Q. Zhu, Y. Zhong, L. Zhang, “Scene classification based on the semantic-feature fusion fully sparse topic model for high spatial resolution remote sensing imagery,” in Proc. 2016 International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS), July 12–19, 2016, Czech, Prague. (EI)
[11] Q. Zhu, Y. Zhong, L. Zhang, “The bag-of-visual-words scene classifier combining local and global features for high spatial resolution imagery,” in Proc. 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), August 15–17, 2015, Zhangjiajie, China. (EI)
[12] Q. Zhu, Y. Zhong, L. Zhang, “Multi-feature probability topic scene classifier for high spatial resolution remote sensing imagery,” in Proc. 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 13–18, 2014, Quebec, Canada. (EI)
[13] M. Song, Y. Zhong, A. Ma, Q. Zhu, L. Cao, L. Zhang, “Sub-pixel mapping with multiple shifted hyperspectral images based on multiobjective evolutionary algorithm,” in Proc. 2019IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 27–August 3, 2019, Yokohama, Japan. (EI)
朱祺琪学术任职担任IEEE Transaction on Geoscience and Remote Sensing、IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing、IEEE Access、Remote Sensing、IEEE Geoscience and Remote Sensing Letter、International Journal of Remote Sensing等遥感、计算机领域国际权威SCI期刊的审稿人。
[1] Q. Zhu, Y. Zhong, L. Zhang, and D. Li, “Adaptive deep sparse semantic modeling framework for high spatial resolution image scene classification,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 10, pp. 6180 – 6195, 2018. (SCI top, IF=4.942,中科院TOP)
[2] Q. Zhu, Y. Zhong, S. Wu, L. Zhang, and D. Li, “Scene classification based on the sparse homogeneous-heterogeneous topic feature model,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 5,pp. 2689 – 2703, 2018. (SCI top, IF=4.942,中科院TOP)
[3] Q. Zhu, Y. Zhong, L. Zhang, and D. Li, “Scene classification based on the fully sparse semantic topic model,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 10, pp. 5525 – 5538, 2017. (SCI top, IF=4.942,中科院TOP)
[4] Y. Zhong, Q. Zhu, and L. Zhang, “Scene classification based on the multifeature fusion probabilistic topic model for high spatial resolution remote sensing imagery,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 11, pp. 6207–6222, Nov. 2015. (SCI top, ESI 高被引论文, Google citation: 101, IF=4.942, 中科院TOP)
[5] Q. Zhu, Y. Zhong, B. Zhao, G. S. Xia, and L. Zhang, “Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 6, pp. 747–751, Jun. 2016. (SCI, ESI 高被引论文, Google citation: 77, IF=2.761, 中科院三区)
[6] Q. Zhu, Y. Zhong, Y. Liu, L. Zhang, and D. Li, “A deep-local-global feature fusion framework for high spatial resolution image scene classification”, Remote Sensing, vol. 10, no. 4, pp. 568, 2018. (SCI, IF=3.244, 中科院二区)
[7] Y. Liu, Y. Zhong, F. Fei, Q. Zhu, Q. Qin, “Scene Classification Based on a Deep Random-Scale Stretched Convolutional Neural Network”, Remote Sensing, vol. 10, no. 3, pp. 444, 2018. (SCI, IF=3.244, 中科院二区)
[8] Y. Zhong, M. Cui, Q. Zhu, and L. Zhang, “Scene classification based on multifeature probabilistic latent semantic analysis for high spatial resolution remote sensing images,” J. Appl. Remote Sens., vol. 9, no. 1, pp. 095064–095064, Jul. 2015. (SCI, IF=2.761,中科院三区)
[9] Q. Zhu, X. Sun, Y. Zhong, L. Zhang, “High-resolution remote sensing image scene understanding: a review,” in Proc. 2019IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 27–August 3, 2019, Yokohama, Japan. (EI)
[10] Q. Zhu, Y. Zhong, L. Zhang, “Scene classification based on the semantic-feature fusion fully sparse topic model for high spatial resolution remote sensing imagery,” in Proc. 2016 International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS), July 12–19, 2016, Czech, Prague. (EI)
[11] Q. Zhu, Y. Zhong, L. Zhang, “The bag-of-visual-words scene classifier combining local and global features for high spatial resolution imagery,” in Proc. 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), August 15–17, 2015, Zhangjiajie, China. (EI)
[12] Q. Zhu, Y. Zhong, L. Zhang, “Multi-feature probability topic scene classifier for high spatial resolution remote sensing imagery,” in Proc. 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 13–18, 2014, Quebec, Canada. (EI)
[13] M. Song, Y. Zhong, A. Ma, Q. Zhu, L. Cao, L. Zhang, “Sub-pixel mapping with multiple shifted hyperspectral images based on multiobjective evolutionary algorithm,” in Proc. 2019IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 27–August 3, 2019, Yokohama, Japan. (EI)
有缘相会 2022-05-11 02:55:11

相关推荐

慢速英语

慢速英语,是VOA电台专为全世界非英语国家初学英语的听众安排的一种简易、规范的英语广播节目。慢速英语节目简介慢速英语又叫SpecialEnglish,是VOA电台专为全世界非英语国家初学英语的听众安排的一种简易...
展开详情

眉山卫生职业学校

眉山卫生职业学校是经四川省教育厅、四川省卫生厅批准的一所全日制中等卫生专业学校,学校位于眉山市东坡区齐通路西三段159号。学校距离成都60余公里,成绵乐城际快铁可直达成都,交通便利。学校建筑面积7.1万平方米,...
展开详情

陆行中学

同济大学附属陆行高级中学创建于1944年,是浦东新区实验性示范性中学。陆行中学学校简介...
展开详情

泸县四中

四川省重点中学——泸县第四中学,成立于1957年9月,位于泸州市中部,泸县东部,南依万里长江的兆雅镇。抓住高中教育发展的机遇,办学规模不断扩大:占地面积从原来的26亩扩展到120余亩,教学班从原来15个扩展到8...
展开详情

伦敦艺术大学伦敦时装学院

伦敦艺术大学伦敦时装学院(LondonCollegeofFashion)世界六大时装学院之一,总部位于伦敦市中心的牛津街,伦敦艺术大学下属六所学院之一,2000年,在与始建于1887年的久负盛名的专注于鞋类和饰...
展开详情

精选推荐更多>

耦合系数k的计算公式

耦合系数k的计算公式:k=πL(C-Cm)。耦合系数,在电路中,为表示元件间耦合的松紧程度,把两电感元件间实际的互感(绝对值)与其最大极限值之比定义为耦合系数。
电路:由金属导线和电气、电子部件组成的导电回路,称为电路。在电路输入端加上电源使输入端产生电势差,电路连通时即可工作。电流的存在可以通过一些仪器测试出来,如电压表或电流表偏转、灯泡发光等;按照流过的电流性质,一般把它分为两种:直流电通过的电路称为“直流电路”,交流电通过的电路称为“交流电路”。

线段,射线,直线的区别和联系

线段,射线,直线的区别和联系:
1、联系:
线段是直线上两点间的部分,射线是直线上一点向一侧无限延伸的部分。它们都是直线的一部分.若射线向反向延长,或线段向两方延长,都可以得到直线,若线段向一方延长可得射线,在直线上取两点可以得到一条线段,取一点可以得到两条射线。
2、区别:
(1)端点:直线没有端点;射线只有一个端点;线段有两个端点。
(2)延长:直线2边可无限延长;射线端点另一端可无限延长;线段不能延长。
(3)测量:直线、射线无法测量,线段可以测量。
(4)表示:直线:一条线,不要端点;射线:一条线,只有一边有端点;线段:一条线,两边都有端点。

早发白帝城体现船快的诗句是什么

《早发白帝城》中体现船速度快的诗句是“朝辞白帝彩云间,千里江陵一日还。”
原文:
朝辞白帝彩云间,千里江陵一日还。
两岸猿声啼不住,轻舟已过万重山。
译文:
早晨我告别高入云霄的白帝城,江陵远在千里船行只一日行程。
两岸猿声还在耳边不停地啼叫,不知不觉轻舟已穿过万重山峰。
《早发白帝城》是唐代大诗人李白在乾元二年(759)流放途中遇赦返回时创作的一首诗,是李白诗作中流传最广的名篇之一。此诗意在描摹自白帝至江陵一段长江水急流速、舟行若飞的情况。首句写白帝城之高;次句写江陵路遥,舟行迅速;三句以山影猿声烘托行舟飞进;四句写行舟轻如无物,点明水势如泻。全诗把诗人遇赦后愉快的心情和江山的壮丽多姿、顺水行舟的流畅轻快融为一体,运用夸张和奇想,写得流丽飘逸,惊世骇俗,又不假雕琢,随心所欲,自然天成。明人杨慎赞曰:“惊风雨而泣鬼神矣!”

汉尼拔为什么是四大名将

汉尼拔是四大名将的原因:第二次布匿战争期间,他奇迹般地率领军队从西班牙翻越比利牛斯山和阿尔卑斯山进入意大利北部,并多次以少胜多重创罗马军队。他对战局时机的总体把握和指挥的协调弹性,成为后世军事家和名将所学习与效仿的范例。
汉尼拔·巴卡(前247年—前183年),北非古国迦太基统帅、行政官,军事家、战略家。他出生在巴卡家族,他生长的时代正逢罗马共和国势力的崛起。少年时向父亲立下誓言终身与罗马为敌。
战略特点:
1、正确制定战略计划,立足于军队的持久远征。
2、大胆冒险,出奇制胜。
3、善于正确判断军事政治情况并利用敌人营垒中的矛盾,分化瓦解敌人。
4、关注战略后方和供应基地的稳定。
公元前190年,汉尼拔受命指挥安条克的舰队,但在锡德战役被罗马的盟军击败。安条克在连串战役中败给罗马之后,有意向罗马人求和并交出汉尼拔,因此汉尼拔逃至克里特岛,但不久便再次返回小亚细亚,投靠当时正与罗马盟国帕加马交战的比提尼亚国王普鲁西阿斯一世。汉尼拔在这场战争中为普鲁西亚斯立下战功,再次让罗马人决心使其就擒。在罗马的要求下,普鲁西亚斯同意将其交出,但决心不落入罗马人手下的汉尼拔至此服毒自尽。