机体-主轴承盖接触结构的微动疲劳试件及装夹机构设计开题报告

笑看人生 范文 报告范文
精选回答

机体-主轴承盖接触结构的微动疲劳试件及装夹机构设计开题报告本文简介:机体-主轴承盖接触结构的微动疲劳试件及装夹机构设计毕业设计开题报告文献综述一、课题研究的背景和意义近年来,随着发动机高功率密度化的发展,工作过程中,机体-主轴承盖接触面上经常发生微动疲劳问题。微动是发生在两接触表面间的一种振幅极小的相对运动,资料表明,在发动机工作过程中,不适当的螺栓预紧力和主轴承载

机体-主轴承盖接触结构的微动疲劳试件及装夹机构设计开题报告本文内容:

机体-主轴承盖接触结构的微动疲劳试件及装夹机构设计

一、课题研究的背景和意义

近年来,随着发动机高功率密度化的发展,工作过程中,机体-主轴承盖接触面上

经常发生微动疲劳问题。微动是发生在两接触表面间的一种振幅极小的相对运动,资料

表明,在发动机工作过程中,不适当的螺栓预紧力和主轴承载荷等均有可能导致机体-

主轴承盖接触面上产生严重的相对切向滑移,这将会增加接触面上微动疲劳损伤的可能

性【1】。

机体是构成发动机的骨架,是发动机各机构和各系统的安装基础,其内、外安装着

发动机的所有主要零件和附件,承受各种低频、高频,直接、间接,低幅,高幅的振动,

接触件间的循环载荷,以致接触面间呈现较小的相对滑动。因此,机体必须要有足够

的强度和刚度。即使我们在设计过程中满足了其设计要求,机体仍然可能在工作过程中

发生失效,究其缘由,大多数失效都是由于机体的微动疲劳导致的,微动疲劳俨然成为

了机体疲劳失效的一个主要失效形式。

目前,对于构件的微动疲劳问题,国内外专家学者已经进行了大量的研究分析,而

且也取得了一系列的成果,但是,前人的研究对象大多数是简单的接触模型,而很少有

人对复杂构件的接触面微动疲劳问题进行研究。机体的结构和应力状态都非常复杂,因

此其与主轴承盖接触面上的微动疲劳问题也就成为了一个难点,目前,国内外在这方面

的研究非常少见。

二、微动疲劳及其危害性

微动是指在机械振动、疲劳载荷、电磁振动或热循环等交变载荷作用下,接触表面

间发生的振幅极小(通常为微米量级)的相对运动。微动可以造成接触表面摩擦磨损,

能使裂纹的萌生和扩展加速,会大大降低零件的疲劳寿命。微动损伤是微动条件下机械

零件的一种损伤方式,Hoeppner.D.W.将微动损伤定义为:对有一定的法向载荷作用于

其上的两个相互接触的表面,若两表面之间存在幅度较小的相对振动运动(一般认为相

对振动幅<300μm),则这两个接触表面上出现的损伤现象就叫做微动损伤。按损伤模

式的不同,微动损伤可分为三种基本形式:微动磨损、微动疲劳和微动腐蚀。

微动磨损,微动疲劳和微动腐蚀这三种基本形式在在微动损伤的发展过程中有可能

同时发生,但作用是不一样的,当某一种形式占主导地位时,微动损伤最终表现为这种

形式。因此,三种失效模式是随着微动条件的变化而变化的【2】。

在交变应力或振动作用下,各种压配合或收缩配合构件的主要疲劳破坏形式就是微

动疲劳损伤,摩擦磨损、疲劳、腐蚀三种失效形式同时存在于这种疲劳破坏形式当中,

而且很大程度上影响了构件的疲劳寿命,严重的还能造成灾难性的事故,研究表明,微

动作用通常使材料疲劳极限降低

20~50%【2】,甚至可能高达

80%。微动疲劳现象普

遍存在于在各种机械部件当中,它能造成飞机,汽车,船舶,核能、建筑、化工、电信

装备、海洋工程、铁路电力、桥梁工程人工植入器官等疲劳失效。因此,微动疲劳被称

为“工业癌症”【3】。

三、微动疲劳研究的现状

微动疲劳被认为是微动磨损和疲劳的共同作用的过程。微动疲劳过程的影响因素很多,据统计其影响因素多达

50

多个。其中主要的有:微动振幅、接触压力、循环应力、应力比、微动循环数、微动块形状和接触宽度。很多的实验表明,任何一个因素都不是单一的影响,而是存在一定的内在联系。微动振幅:Vingsbo

Soderberg

在研究位移幅和剪应力对低碳钢的影响时,引入了微动图,他们把微动分为三个区域:粘着区、部分滑移区和滑移区。研究发现:低碳钢的疲劳寿命在实验初期都会随着微动振幅的增加而下降,到达一定值时,寿命将至最低点,而这个点被认为是滑移区和部分滑移区的分界点。当振幅继续增大,疲劳寿命开始增加,当振幅到达一个特殊值的时候疲劳寿命曲线开始趋于一个稳定值,继续增大振幅,对疲劳寿命已经没有明显的影响。Jin

等研究人员在对钛合金

Ti-6Al-4A

的研究中发现,最小的疲劳寿命发生在振幅为50

~

60μm时,并指出一旦出现滑移,微动磨损在微动损伤过程中就会起到主要的影响作用,导致微动疲劳寿命逐渐上升【4-6】。

1)微动桥-试样微动疲劳国外研究现状

微动疲劳试验和仿真模型有很多种形式,最早用于微动疲劳试验的接触模型主要是

桥式微动块-平板试样接触【7】,一直到本世纪初国外学者对方足桥模型的研究都非常多。1998年,Eric

H.

Jordan等提出了平面-平面方足桥接触表面应力分布的表达式,并通过有限元分析加以验证,结果表明,公式计算结果与有限元分析结果相对误差为4%;1999年,Michael

R等研究了循环载荷对二维平面-平面接触方足桥表面应力强度因子SIF的影响规律,提出了一种新的疲劳寿命估算方法;2001年A.L.Hutson等以两个相同材料Ti-6Al-4V薄板组成的平面-平面接触方足桥为研究对象,分别采用试验和有限元分析两种手段研究了厚度、循环应力比、摩擦系数对方足桥接触面微动疲劳的影响,结果表明,有限元分析所得应力场和位移场与试验结果有较大差异,且应力场和位移场对摩擦系数非常敏感;2006年,Prithvi

Raj

Arora等设计了一种实验装置,研究了接触压力和轴向循环载荷对7075-T6铝合金方足桥疲劳寿命的影响,试验表明,当保持轴向载荷不变,接触压力增大时,疲劳寿命减小,当接触压力不变,而轴向载荷增大时,疲劳寿命也明显减小。方足桥模型的最大优点是可以使用标准的疲劳试件,不管试件是处于弯曲还是轴向力作用下。这种简单的装置也有一些不利因素,如桥足的接触状况很难确定,而且每个桥足的滑移状况也是不同的。

圆柱形微动块-平板试样接触也是一种广泛用应于微动疲劳试验和仿真计算的接触

模型。1996年,Matthew等研究了圆柱形微动块-平板试样表面微动疲劳裂纹形成的机理,并研究了摩擦系数对其接触面微动疲劳寿命的影响规律,结果表明,摩擦系数增大,疲劳寿命降低;2006年,M.Massingham等研究了圆柱面接触条件下变幅加载对微动疲劳应力分布的影响。此结构的优点是接触应力能通过传统的分析方法得到,且应力分析中的正应力P,切向应力Q等参数均可以较容易的测量和控制【8】。

目前,为了更好的模拟实际的接触模型,研究者们提出了另外一种接触模型,即楔

形接触。Ruiz,Papaniknos和Meguid,Conner和Nicholas都使用楔形接触进行了微动疲劳研究【9】。

2)发动机零部件微动疲劳国外研究现状

在发动机零部件微动疲劳研究方面,2004年,David

Merrltt基于有限元计算结果,

运用Ruiz法则预测了连杆大头孔内微动疲劳裂纹萌生的位置,并通过实验加以验证,结果表明,论文所预测的结果是正确的;Badding,Bruce等运用ABSQUS软件对发动机工作过程中连杆大头与其轴承之间的接触问题进行了分析,并在此基础上提出了一种预测连杆大头与大头轴瓦接触面上微动疲劳寿命的方法【10】;2007年,Kim,Tae-Gyu等研究了微动磨损对汽车发动机连杆材料SMA40疲劳极限的影响,经研究表明,在微动作用下,SMA40疲劳极限由437MPa减小至350MPa,约下降了20%【11】;2010年,韩国的Jung

Ho

Son等分析了某船用柴油机连杆微动疲劳失效现象,在分析过程中,采用多体柔性动力学模拟了发动机一个工作循环过程中连杆的实受力情况,通过分析连杆大头盖与螺栓接触面上的相对滑移、切向应力、剪切应力,运用Ruiz法则预测了连杆大头盖上微动疲劳发生的可能性以及发生的位置,并与工作20000小时后的柴油机连杆进行对比,验证了分析的正确性;2011年,韩国Hongik

University的Sangwoo

Cha等对发动机机体-主轴承盖接触面上的微动疲劳现象进行了分析研究,在分析过程中,运用ABSQUS软件对发动机的两个工作循环过程做了瞬态计算分析,在计算结果的基础之上,分别通过计算临界面疲劳参数SWT(Smith,Watson与Topper)和FS(Fatemi与Socie)的最大值,预测了机体-主轴承盖接触面微动疲劳裂纹萌生的位置,并与试验结果进行对照,结果表明,FS参数预测所得疲劳裂纹萌生位置与实际结果有着良好的一致性,然后结合FS参数研究了发动机转速、轴瓦装配过盈量、螺栓预紧力以及平衡轴系统对机体-主轴承盖接触面微动疲劳发生概率的影响规律,预测了机体横隔板上微动疲劳裂纹萌生的位置,并与实验结果对照,两者取得了良好的一致性。

微动疲劳国内研究现状

国内微动摩擦学的研究起步较晚,20世纪70年代,国内才开始出现微动一词,真正

的研究直到80年代才开始,但也缺乏系统深入的研究。目前,国内微动疲劳研究走在最前沿的主要是西南交通大学的周仲荣教授等。

微动疲劳国内研究现状。

1)微动桥-试样微动疲劳国内研究现状

在方足桥-试样微动疲劳研究方面,国内有不少的学者作了大量的研究。1993年,

西安石油学院的高护生等研究了接触压力对微动疲劳强度的影响,结果表明,接触压力

增大,微动疲劳极限下降,当下降到一定程度时不再变化【12】;1996年,朱如鹏等以桥式试件和榫联接试件为研究对象,在高低周复合载荷作用下进行了微动疲劳试验,提出了将微动疲劳中的力学参数分为应力状态参数和微动摩擦参数两类的新设想,并建立了构件在受高低周复合载荷和受微动作用时的微动疲劳寿命预测公式;2003年,西南交通大学的赵华、周仲荣等应用有限元方法,分析了圆柱/平面接触区域内的应力分布【13】;2006年,西北工业大学的刘军、刘道新等应用ANSYS软件研究了方足桥-试样表面上的应力分布状态,以及名义接触压力、循环载荷、摩擦因数等影响因素对接触面接触状态和接触应力分布的影响规律,成功预测了微动疲劳裂纹萌生的位置,研究了磨损程度对微动区接触状态和接触应力的影响,提出了基于断裂力学基础的微动疲劳裂纹扩展寿命估算方法【14】;2007年,浙江工业大学的周文等研究了摩擦系数对微动疲劳的影响规律【15】;2009年,空军工程大学的李启鹏等运用ANSYS软件分析了平面/平面接触的微动疲劳,考察了微动疲劳受刚度系数、材料特性等的影响【16】;同年,河南理工大学的孙明俊等提出了在进行有限元分析时,接触区域微动接触状态的判定方法【17】;2010年,西南交通大学的沈火明、刘娟等主要分析了径向微动磨损过程中的力学行为和损伤机理,通过数值模拟,得到了微动疲劳受材料副、摩擦系数的影响规律【18】;同年,海军航空工程学院的杨茂胜等以圆柱/平面接触模型为研究对象,对其进行了有限元分析,得到了不同影响因素下应力强度因子(SIF)随裂纹扩展历程变化规律的曲线【19】。

2)、机体-主轴承盖接触面国内研究现状

2002年,北方发动机研究所的马玉生等以某高速大功率柴油机为研究对象,针对在

样机强度考核试验中出现的横隔板断裂问题,采用多种手段对断裂原因进行了分析研

究,得出结论,同样认为微动疲劳是机体横隔板失效的主要原因,并有针对性地提出了

以下几条改进措施:增加主轴承盖的宽度和长度;提高铸造和机械加工的质量;适当加

大曲轴平衡重,最大限度地减小曲轴的内力矩,避免或减小工作时因曲轴弯曲变形对机

体横隔板扇动的影响;增大箱体下沉量或主轴承盖采用框架结构,以提高箱体的刚度【20】

;2006年,北方发动机研究所的魏志明、谭建松等采用有限元计算、断口分析、试验等多种手段对机体-主轴承盖接触面上的微动疲劳进行了分析,从微观角度揭示了微动磨损对机体可靠性的影响,并提出了采用框架式主轴承盖和减磨衬垫来改善该处的微动疲劳[21];2009年,北方发动机研究所的***等研究了机体横隔板断裂的原因和机理,认为是微动疲劳导致了机体横隔板疲劳失效,并提出了以下几点措施:在横隔板与主轴承盖间加缸垫;在机体横隔板上预置残余压应力;增大主轴承盖的长度和宽度或采用整体框架式主轴承盖[22]。

中北大学的苏铁熊、王军等对机体-主轴承盖及其模拟件方足桥-试样接触面上的微

动疲劳进行了基础研究,通过分析临界面疲劳参数SWT和FS在接触面上的分布,研究了不同因素对方足桥-试样及机体-主轴承盖接触面上微动疲劳裂纹萌生的位置和微动疲劳发生概率的影响。

[1]

Sangwoo

Cha,Hoon

Chang,et

al.A

Development

of

the

Fretting

Fatigue

Analysis

Techniques

for

Engine

Aluminum

Block[J].

SAE

Paper

2011-01-0483.

[2]

陶峰,张险峰,尹明德等.微动损伤的研究综述[J].南京航空航天大学学报,1999,

31(5):545-550.

[3]

欧红永.微动疲劳接触应力的有限元分析研究[D].杭州:浙江工业大学,2009.

[4]

张晖.

镁合金及表面处理微动磨损研究[D].

西南交通大学硕士学位论文.

2007.

[5]

Gillt

H.W.,Mack

E.LNotes

on

some

endurance

test

of

metals.

American

Journal

of

Applianced

Mechnaics.

1949(4).

259~268.

[6]

Metallic

Materials

Properties

Development

and

Standardization.MMPDS.

[7]

苏彬.45

号钢在不同应力比循环载荷下的微动疲劳特性[D].杭州:浙江工业大学,

2010.

[8]

沈明学,彭金方等.微动疲劳研究进展[J].材料工程,2010,12:86-91.

[9]

D.Nowell.Nowell,D.Dini,D.A.Hills.

Recent

developments

in

understanding

of

fretting

fatigue[J].Engineering

Fracture

Mechanics,2006,73:207-222.

[10]

Badding,Bruce,et

al.A

method

to

predict

fretting

in

diesel

engine

connecting

rod

bearing

bores[C].Technical

Conference

of

the

ASEM

International

Combustion

Engine

Division,2004:607-616.

[11]

Kim,Tae-Gyu,et

al.

A

Study

on

Fatigue

Characteristic

of

Connecting

Rod

Materials

for

automobile[J].Key

Engineering

Materials,2007:279-282.

[12]

高护生,股海澄,周惠久.接触压力对微动疲劳的影响[J].西安石油学院院报,1993,8

(3):31-35.

[13]

赵华,金雪岩等.微动接触应力的数值分析[J].

四川大学学报,2003,35(5):32-36.

[14]

刘军.微动疲劳强度及寿命估算研究[D].西安:西北工业大学,2006.

[15]

周文.微动疲劳裂纹萌生特性及寿命预测[D].杭州:浙江工业大学,2007.

[16]

李启鹏,仝宠楼,武卫.基于

Ansys

的微动疲劳分析工程应用研究[J].机床与液压,

2009,37(2):193-195,215.

[17]

孙明俊,刘玉金.基于

ANSYS

有限元的微动疲劳接触特征分析[J].重庆科技学院学报,2009,11(5):148-151.

[18]

沈火明,刘娟等.球-平板径向微动磨损行为的数值模拟[J].西南交通大学学报,2010,4(6):909-913.

[19]

杨茂胜,陈跃良.微动疲劳结构应力强度因子有限元分析[J].航空学报,2010,31(10):1968-1973.

[20]

马玉生,王宇燕等.高速大功率柴油机箱体横隔板强度研究[J].车用发动机,2002,137(1):22-24.

[21]

魏志明,谭建松等.微动磨损对发动机机体可靠性的影响及研究[J].车用发动机,

2006,162(2):56-58.

[22]

***,宋吉林,葛玉霞等.车用高强化柴油机机体微动磨损失效研究[C].第十六届全国大功率柴油机学术年会论文集.2009:176-178.

2.设计方案:

2.1方案:

1、查阅资料,了解微动试验的目的和方法,了解面-面微动试验的方法,了解现代试验装置应具备的功能和实现功能的手段,制定设计的技术路线。

2、根据面-面接触的特点,根据试验机的拉压力设计实验件的结构方案。

3、根据实验件的结构和尺寸设计装夹和压紧机构方案。

4、对装夹和压紧机构进行分析和校核。

5、对实验件进行微动疲劳试验仿真,校正结构设计。

6、完成实验件的设计图,完成装夹结构和压紧机构的设计图

7、完成毕业设计说明书及外文翻译。

2.2、进度

3月09日~3月30日

写开题报告,进行开题答辩。

3月30日~4月20日

完成试验件及装夹机构的方案设计;

4月21日~5月19日

完成试验件及装夹机构的详细设计与校核;

5月20日~6月10日

设计说明书的整理、修改与打印;

6月11日~6月15日

论文答辩。

指导教师意见:

指导教师:*年*月*日

附件:参考文献注释格式

学术期刊

作者﹒论文题目[J]﹒期刊名称,出版年份,卷(期):页次

如果作者的人数多于3人,则写前三位作者的名字后面加“等”,作者之间以逗号隔开。例如:

[1]

***,胡征,景苏等.

纳米粒子的控制生长和自组装研究进展[J].

无机化学学报,

2001,17(3):

315~324

[2]

J.Y.Li,X.L.Chen,H.Li.

Fabrication

of

zinc

oxide

nanorods[J].

Journal

of

Crystal

Growth,2001,233:5~7

学术会议论文集

作者﹒论文题目﹒文集编者姓名﹒学术会议文集名称[C],出版地:出版者,出版年份:页次

例如:

[3]

司宗国

谢去病

王群﹒重子湮没快度关联的研究﹒见赵维勤,高崇寿编﹒第五届高能粒子产生和重离子碰撞理论研讨会文集[C],北京:中国高等科学技术中心,1996:105

图书

著者﹒书名[M]﹒版本﹒出版地:出版者,出版年﹒页次

如果该书是第一版则可以略去版次。

例如:

[4]韩其智

孙洪洲﹒群论[M]﹒北京:北京大学出版社,1987﹒101

学位论文

作者﹒论文题目[D]﹒学士(或硕士、博士)学位论文.

出版地:出版者,出版年份

例如:

[5]

陈异.纳米粒子形貌控制研究[D].

硕士学位论文.

北京:中国科学院,2002

专利

专利所有者.专利名称[P].

专利国别:专利号,日期.

例如:

[6]

姜锡洲

.

一种温热外敷药制备方案[P].

中国专利:881056073,1989-07-26.

报纸类

作者.篇名[N].报纸名,出版日期(版次)

[7]

李大伦.经济全球化的重要性[N].光明日报,1998-12-27(3)

初夏的雨 2022-07-18 09:27:32

相关推荐

benzo brilliant orange gr

benzobrilliantorangegr汉语翻译:【建】苯并亮橙GR...
展开详情

cosmos

cosmos汉语翻译:n.宇宙,秩序,和谐,*斯菊【医】*斯菊词意辨析:space,universe,cosmos这些名词均含“宇宙,太空”之意。space:指大气层或太阳系之外的极高的天空,即太空之意。uni...
展开详情

zinc (electro)plating

zinc(electro)plating汉语翻译:【化】电镀锌...
展开详情

kleene hierarchy

kleenehierarchy汉语翻译:【计】克林分层...
展开详情

air fuel ratio

airfuelratio汉语翻译:【机】混合比...
展开详情

精选推荐更多>

大令是哪位书法家

大令是指书法家王献之。王献之(公元344年-386年),字子敬,小名官奴,琅玡临沂(今山东省临沂市)人。东晋官员、书法家、画家、诗人,右军将军王羲之第七子、晋简文帝司马昱女婿、晋安帝司马德宗的岳父。
王献之少负盛名,才华过人。得到宰相谢安赏识,历任本州主簿、秘书郎、司徒左长史、吴兴太守,累迁中书令等职,与族弟区分,人称“大令”。他先后迎娶郗道茂及新安公主司马道福为妻,嫁女于太子司马德宗(晋安帝)。太元十一年(386年),病逝,时年四十三岁。安帝时获赠侍中、特进、光禄大夫、太宰,谥号为“宪”。
王献之精习书法,以行书及草书闻名,在楷书和隶书上有深厚功底。在书法史上与王羲之并称“二王”,有“小圣”之称。又与张芝、钟繇、王羲之并称“书中四贤”。唐人张怀瓘《书估》评其书为“第一等”。同时,王献之还善于作画,唐人张彦远《历代名画记》目其画为“中品下”。

点石成金的主人公是谁

“点石成金”的主人公是许逊。点石成金,汉语成语,读音是diǎn shí chéng jīn,比喻把不好的文字改好。出自《列仙传》:“许逊,南昌人。晋初为旌阳令,点石化金,以足逋赋。”
许逊(239-374年),字敬之,豫章郡南昌县长定乡益塘坡慈母村(今江西省南昌市高新区麻丘镇附近)人。晋朝著名道士,道教净明派祖师,与张道陵、葛玄、萨守坚并称道教四大天师。
个性聪颖,师从大洞君吴猛学道,太康元年(280),举孝廉出身,出任旌阳县令。不慕名利,弃官东归,修道炼丹于西山,着书立说,创立“太上灵宝净明法”。相传著有《灵剑子》、《玉匣记》等道教经典。
宁康二年,羽化,时年136岁。宋徽宗政和二年(1112),追封“神功妙济真君”。

中举是什么意思

中举的意思科举时代称乡试考中为中举。
中举,汉语词语,读音是zhòng jǔ。
出处:明·都穆《都公谭纂》卷下:“明年秋,汝弟中举,名在百十二。”
例句:
1、明·李贽《答耿司寇》:“故使克明不中举,即不中进士,即不作大官,亦当为天地间有数奇品,超类绝伦。”
2、清·范阳询《重修袁家山(袁可立别业)碑记》:“历考《列仙传》中所载,中举者十万人,拔笔者八千余处。”
3、杨沫《青春之歌》第一部第二章:“他中举之后,还没等进京应考。”

一片丹心出师表下联

“一片丹心出师表”下联是“万斛深情诫子书”,“一片丹心”对“万斛深情”,“出师表”对“诫子书”,对仗工整。
《出师表》是三国时期蜀汉丞相诸葛亮在决定北上伐魏、克复中原之前给后主刘禅上书的表文。这篇表文以议论为主,兼用记叙和抒情。全文以恳切委婉的言辞劝勉后主要广开言路、严明赏罚、亲贤远佞,以此兴复汉室还于旧都(洛阳);同时也表达自己以身许国,忠贞不二的思想。文章既不借助于华丽的辞藻,又不引用古老的典故,多以四字句行文。
《诫子书》是三国时期政治家诸葛亮临终前写给他儿子诸葛瞻的一封家书。文章阐述修身养性、治学做人的深刻道理。从文中可以看出诸葛亮是一位品格高洁、才学渊博的父亲,对儿子的殷殷教诲与无限期望尽在此书中。全文通过智慧理性、简练谨严的文字,将普天下为人父者的爱子之情表达得非常深切,成为后世历代学子修身立志的名篇,并入选中国义务教育语文教材。